
AN IMPROVED NEURAL NETWORK BUILDER THAT INCLUDES
GRAPHICAL NETWORKS AND PI NODES

M.S. AL-RAWI A. B. TARAKJI

Computer Science Dept, King Abdullah the Second
School for Information Technology. Jordan University

CEO
Spacetoon Online

email: rawi@ju.edu.jo
phone: 06-5355000-4518

Mail: POB 13496, Amman 11942, Jordan

bisher@spacetoon.com
(+963) 93-858930

Abstract
Neural Network Builder is a software tool that aids in
the design, training, and testing of neural networks
using an easy user friendly interface. This tool is an
efficient neural network simulator, it can be used for
projects that can help in the understanding of neural
networks by exhibiting different algorithms and ideas
and allowing the tweaking and monitoring of the
network’s many properties. In addition to ease of
creating and simulating, the object oriented code
provides a valuable software environment that allows
the development of new algorithms and theories. To our
knowledge, this is the first simulator that implements
high order nodes.

Keywords : High Order Neural Network, GUI, Java,
Backpropagation, Sigma-Pi networks.

1. Introduction
In a research aimed to build a neural network that could
recognize the English alphabet, most of research led to
“hard coded” neural networks, networks that could do
one task only. These NN were fast but led to problems
due to there extreme specialization in a certain task, any
change to the number of neurons, the topology, or just
simple learning rate needed a recompile. Such
parameters could be exposed with some careful
programming in runtime, but still the whole network
was bound by its specialized nature. In addition to these
shortcomings, the code resembled nothing that we had
learned in theory; the whole NN was just a big array of
pointers with another array that held the connections,
making the bridging between theory and practice a hard
task for those still new to the entire concept.

The main aim of this research is to build a general
network where all aspects could be changed at runtime,
in a simple and clear way, using an object oriented
design that is analogous to what we have learned. To
take this task to a higher level of similarity between
theory and practical application, we allowed the
network to be drawn and updated graphically bringing
additional similarity between the classroom and the
screen. Also thrown into the research are the
implementation of different theories, theories that are
not used a lot in commercial programs since they are
too hard to control or inefficient, but are very important

to the understanding of NN and how they work. One
such feature is the High order neural network (HONN)
with PI nodes. Also this is multiplatform, written in
Java, it allows this code to be run anywhere without
modification, it also lends itself to being easily exposed
to the web, and its computations to be distributed across
networks.

There are many neural network simulators available
both commercial and free (too many in fact) [4], but
most of these simulators are system dependent, and
written for few platforms (UNIX or Windows). The
majority of these simulators have some sort of GUI but
most of them do not depict the network graphically, nor
allow the creation of PI nodes. There are some software
packages that do all that, such as NeuralBuilder from
NeuralSolutions, a commercial application that works
solely on Windows. There are also some portable C++
simulators such as YANNS, but most of the simulators
available are written in C to maximize performance.
Not many simulators are written in Java, but the open
source project “OpenAi” is a notable example. At the
end of the day, a simple search in Google will give the
reader thousands of results.

2. Theoretical material used in the
neural network builder

Following is a non comprehensive introduction to the
theory and mathematics behind neural networks, most
importantly the theories relevant to this research. A
neural network is a powerful data modeling tool that is
able to capture and represent complex input/output
relationships. The motivation for the development of
neural network technology stemmed from the desire to
develop an artificial system that could perform
"intelligent" tasks similar to those performed by the
human brain. Neural networks resemble the human
brain in the following two ways:

• A neural network acquires knowledge through
learning.

• A neural network's knowledge is stored within
inter-neuron connection strengths known as
synaptic weights.

The most common neural network model is the
multilayer perceptron (MLP). This type of neural
network is known as a supervised network because it
requires a desired output in order to learn. The goal of
this type of network is to create a model that correctly
maps the input to the output using data so that the
model can then be used to produce the output when the
desired output is unknown The MLP and many other
neural networks learn using an algorithm called
backpropagation. With backpropagation, the input data
is repeatedly presented to the neural network. With each
presentation the output of the neural network is
compared to the desired output and an error is
computed. This error is then fed back (backpropagated)
to the neural network and used to adjust the weights
such that the error decreases with each iteration and the
neural model gets closer and closer to producing the
desired output. This process is known as "training".

2.1 Multilayer Network Structure
A neural network with one or more layers of nodes
between the input and the output nodes is called
multilayer network.

The multilayer network structure, or topology, consists
of an input layer, two or more hidden layers, and one
output layer. The input nodes pass values to the first
hidden layer, its nodes to the second and so on till
producing outputs.

Fig. 1 A Multilayer Perceptron (MLP), A two-layer
neural network that implements the function: f(x)=
σσσσ (wjkσσσσ (wijxi + w0j) + w0k),

These are the hidden units that enable the multilayer
network to learn complex tasks by extracting
progressively more meaningful information from the
input examples.

2.2 Higher Order Networks
The higher order neural networks (HONN) have been
developed with intention to enhance the nonlinear
descriptive capacity of the feed-forward multilayer
perceptron networks. This is achieved by means of
increasing the nonlinear descriptive capability of the
individual neurons.

A higher order neural network has summation (sigma)
as well as product (pi) units. A HONN builds
multivariate high-order polynomial models:

P(x) = w0 + Σi wi xi + ΣiΣj wij xi xj + ΣiΣjΣk wijk xi xj
xk + ... (1)

or written concisely:

P(x) = w0 + Σ wi Π xj
r (2)

The Sigma-Pi neural networks (SPN) are such
feedforward networks where each layer contains higher-
order terms. Often the layers have summation units
feeded via weighted connections by intermediate
product unit outcomes.

2.3 Sigma-Pi Network Structure
Sigma-Pi neural networks are sparsely connected
HONN. Researchers restrict the polynomial order (that
is the network topology) to a configuration sufficient to
achieve the desired degree of accuracy using a priori
knowledge about the given task.

Fig. 2 A Sigma-Pi network

The sigma units compute the sum of weighted inputs pj
from the lower j-th layer:

s = Σj wi pj (3)

The pi units compute the product of weighted inputs xi
from the lower i-th layer:

pj = Πi wi xi (4)

2.4 BackPropagation:
MLP became applicable on practical tasks after the
discovery of a supervised training algorithm for
learning their weights; this is the backpropagation
learning algorithm. The backpropagation algorithm for
training is iterative with the weights adjusted after the
presentation of each example.

The error backpropagation algorithm includes two
passes through the network: forward pass and
backward pass. During the backward pass the weights
are adjusted in accordance with the error correction

rule. It suggests that the actual network output is
subtracted from the given output in the example. The
weights are adjusted so as to make the network output
closer to the desired one.

2.4.1 Derivation of the Backpropagation
Algorithm
The backpropagation algorithm [1] for training the
multilayer perceptron implements a generalized delta
rule according to which with each training example
every weight is updated as follows:

w = w + ∆ w (5)

where: ∆ w= - η ∂Ee / ∂w and Ee = (1/2) Σk (yk - ok)
2

The implementation of the generalized delta rule
requires deriving an expression for the computation of

the derivatives ∂Ee / ∂w:

∂Ee / ∂w = (∂Ee / ∂s)(∂s / ∂w) (6)

The first part ∂Ee / ∂s reflect the change of the error as
a function of the change in the network weighted input

to the unit. The second part ∂s / ∂w reflects the change
of the error as a function of the change of particular
weight w to that node. Since:

∂s / ∂w = ∂ (Σl wl ol) / ∂w = o (7)

the expression is reduced as follows: ∂Ee / ∂w = (∂Ee /
∂s) o

2.4.1.1 Delta Rule for weights j→→→→k on
connections to nodes in the output layer

∂Ee / ∂wjk = (∂Ee / ∂sk) oj (8)

∂Ee / ∂sk = (∂Ee / ∂ok)(∂ok / ∂sk)

∂Ee / ∂ok = (∂ ((1/2) Σl (yl - ol)
2)) / ∂ok

= (∂((1/2)(yk - ok)
2)) / ∂ok // comment: from

the case l = k

= (1/2) 2 (yk - ok) [∂(yk - ok) / ∂ok]

= - (yk - ok)

∂ok / ∂sk= ∂σ (sk) / ∂sk

 = ∂σ ' (sk)

if σ is sigmoid function ok (1 - ok) (this can be
obtained from s (sk) = 1 / (1 + e-sk))

Therefore:

∂Ee / ∂sk = - (yk - ok) ok (1 - ok) (9)

and when we substitute: βk = ok (1 - ok) [yk - ok]

the Delta rule for the output units becomes:

∆ wjk = -∂Ee / ∂wjk = η βk oj (10)

2.4.1.2 Delta Rule for weights i→→→→j on
connections to nodes in the hidden layer

In this case the error depends on the errors
committed by all output units:

∂∂∂∂Ee / ∂wij = (∂ Ee / ∂sj) oi

∂Ee / ∂sj = Σk (∂Ee / ∂sk)(∂sk / ∂sj)

= Σk (-βk) ∂sk / ∂sj // comment: from ∂Ee / ∂sk
= -βk

= Σk (-βk) (∂sk / ∂oj)(∂oj / ∂sj)

= Σk (-βk) wjk (∂oj / ∂sj)

= Σk (-βk) wjkoj (1 - oj)

Therefore, when we substitute:

βj = - ∂Ee / ∂sj= oj (1 - oj) Σk (-βk) wjk (11)

the Delta rule for the hidden units becomes:

∆wij = -∂Ee / ∂wij = η βj oi (12)

2.5 Backpropagation Algorithm for Sigma-
Pi Networks

The principles of the backpropagation learning
algorithm are valid also for Sigma-Pi networks.

2.5.1 Sigma-Pi Delta Rule for weights i→ j
on connections to nodes in the hidden
layers

∂Ee / ∂sj = Σk (∂Ee / ∂sk)(∂sk / ∂sj)

= Σk (-βk) ∂sk / ∂sj // comment: from ∂Ee / ∂sk
= -βk

= Σk (-βk) (∂sk / ∂oj)(∂oj / ∂sj)

= Σk (-βk) (s'k) (∂oj / ∂sj)

= Σk (-βk) (s'k) oj (1 - oj) (13)

where for sk defined: sk = w0 + Σj1 wj1 oj1 + Σj1Σj2 wj1j2
oj1 oj2 + Σj1Σj2Σj3 wj1j2j3 oj1 oj2 oj3 + ...

its derivative (∂sk / oj2)=s'k is: s'k = Σj1 wj1j2 oj1 + Σj1 Σj3
wj1j2j3 oj1 oj3 + ...

Therefore, the benefit is:

βj = - ∂Ee / ∂sj = oj (1 - oj) ∑k βk s'k (14)

3. The Proposed Algorithm
The main goal of this research is to give the user an
intuitive tool to manage High order neural networks,
namely Sigma Pi networks. The introduction of Pi
nodes in the network complicates the mathematics and
algorithms needed to correctly compute the output of
the network, especially the computation of
backpropagation. We also wanted to allow the user to
use arbitrary topology, to connect any node to any other
node in the network, allowing the testing of different
topologies and configurations. This also creates lots of
problems in the network’s basic computations. The
following algorithms try to find solutions to these
problems.

3.1 The network structure:
 The first step to finding solutions is to create a
structure for the network that allows arbitrary and
changing topology. Usually networks are created by
using arrays for the nodes and connections; this will not
exactly work here.

A better structure would be one less used as it is usually
slower; create an object for each node in the neural
network, with a list of connection going in and a list of
connections going out, so when ever this node is
connected to another, we just create a link (which is
implemented as another object) and add a reference of it
to the out links list of the connect from node, and
another reference to the in links list of the connected to
node. These nodes can be arranged into layers, each
layer having a list of all the nodes in it, and then the
high order network can contain many layers, also
maintained by a list. Whereas this structure will allow
connections between different nodes of the network, it
creates a big problem in the computation of
backpropagation, since the latter needs to compute the
derivative of the error rule. The adding of an unknown
number of layers also complicates this task.

To solve these problems, the proposed algorithm breaks
down the derivation rules to their basic elements and
tries to reconstruct them according to the topology.

3.2 The FeedForward Algorithm
The first algorithm would be the feedforward algorithm,
one that presents the network with a sample at its input
layer and allows it to be forward propagated till we
reach the output layer.

This algorithm is fairly simple with the suggested
network structure, get a layer then loop through all its
nodes computing the output with the following steps:

compute the output for each node:

a. sum = 0 ; i = 1;
b. get the incoming link(i) from the in links list
c. get the other endpoint’s output Oj(the neuron from

which the link came from)
d. multiply Oj by the links weight
e. add Oj to sum
f. i = i+1
g. if there are more links go to (b)
h.the output = σ(sum) //pass the sum through the

activation function

3.3 The Backpropagation for Sigma Nodes
Algorithm
There are two kinds of sigma nodes: output nodes and
hidden layer nodes.

3.3.1 Output Layer Nodes
The Delta rule for the output units is:

∆ wjk = -∂Ee / ∂wjk = η βk oj (15)

βk = ∂σ (sk) / ∂sk [yk - ok] (16)

Where j is the hidden layer and k is the output layer

The steps for computing beta for output units
are:

1. compute the output for each node:
2. compute the derivative of the activation

function
3. beta = (target – output)* σ'(sum)

After computing beta the computation of the
Delta rule is simple.

3.3.2 Hidden Layer Nodes

βj = - ∂Ee / ∂sj= σ'(oj) Σk (-βk) wjk (17)

for the hidden layers the beta is a bit more complicated
as we have to accumulate the betas for the layer above
the neurons layer, this is easily obtained by reading the
out links list and getting the computed beta.

1. compute the sum and output for node

2. errorsum = 0 , i=1

3. get link(i) from out links

4. get the “to” node from link (the node that the link
leads to)

5. errorsum = errorsum + to.beta*link.wieght

6. beta = σ' (sum) * errorsum //σ' is the derivative of
the activation function

3.4 The Backpropagation Algorithm for Pi
Nodes

βj = - ∂Ee / ∂sj = σ' (sj)∑k βk s'k (18)

The problem with computing this beta is s'k where

sk = w0 + Σj1 wj1 oj1 + Σj1Σj2 wj1j2 oj1 oj2 + Σj1Σj2Σj3 wj1j2j3
oj1 oj2 oj3 + ... (19)

is the sum of all the incoming data into this pi node

(∂sk / oj2) = s'k = Σj1 wj1j2 oj1 + Σj1 Σj3 wj1j2j3 oj1 oj3 + ...
 (20)

it is apparent that the derivation ∂sk / oj2 is basically sk
with oj2 set to equal 1. With this in mind, the algorithm
to compute the s'k for pi nodes is:

1. P is the Pi node, N is the node that P’s output
will be derived in respect to

2. i=0;product=1;
3. get link(i) from in links list for P
4. if link(i).from = N then product = product*1
5. else

a- get output o of link(i).from
b- product = product*o

the computation of the beta of such node is the same as
Sigma nodes.

4. The Implementation
The following is the implementation of the algorithms
presented, these algorithms will be explained more
where the code is represented.

4.1 Implementation of the MLP
At the heart of this research is the correct use of object
oriented programming to achieve a well structured
application, one that can be developed quickly and
efficiently, and to be debugged and extended easily.
This application must also be user friendly,
implementing all graphically interface elements that aid
the user in getting the job done. The first choice was to
use Java, being a strict object oriented language that
allows high productivity through its large library of
classes. The second choice was to extend (inherent)
from Java’s Graphical User Elements, since most of the

classes of the neural network were to be depicted
graphically. And the third choice was to allow the
changing of any aspect of the network at runtime, but
the computational logic had to withstand. With these
points in mind, let us look at the classes’ tree:

Fig. 3 The main classes used in neural network
builder

As shown, the basic element of the Honn (high order
neural n etwork) class is the Neuron, but since we have
to different kinds of neurons, sigma and pi neurons, we
need to build the HONN from a “higher order” class,
which is the HonnNode class as shown. This class is
abstract since it contains some abstract methods,
functions with no bodies that should be implemented in
the children of this class. From this class we extend two
classes: Neuron, and PINode. This design allows us to
use polymorphism on the Honn class, by building from
the abstract HonnNode class, and these classes will be
defined at runtime to be one the subclasses.

The most important functions of HonnNode are :
computeOutput , getOutput, and setActivationFunction.
Also in this class we have two Vectors (resizable
arrays) that contain pointers to Synapses, the connectors
that connect neurons to each other. Each Synapse
contains a weight value, this is updated when the
backpropagation is computed.

Also within each HonnNode is the activation function,
since we wanted to allow it to be changed at runtime,
we also allowed the ActivationFunction class to be
abstract with two important methods : computeOuput,
and computeDerivative, which are overrided by the
class that implement ActivationFunction, meaning we
can call these functions without knowing which
activation function is used by the node.

It also can be noticed that Synapse and HonnNode
extend JCompnent from the Java Graphical
Components Libraray “Swing”. This allows these two
classes to be “drawn” be simply overriding the
paintComponent() function. By adding instances of
these classes to a container (like a JPanel) these objects
will automatically be drawn.

HonnNode
.Vector inlinks

Neuron

PINode

JComponen
t

Honn
Vector
layers

Layer
Vector
nodes

Synapse

ActivationFun

Sigmoid Tanh

Linear

With these building blocks, the Layer class uses
HonnNodes to create a “layer” of neurons, the Honn
class then uses multiple layers to create a full MLP.

4.2 Implementing the Backpropogation
rule:
The following functions are from the Neuron Class:

The first is the computeOutput which calculates the
output of this neuron:

public void computeOutput()
 {
 Enumeration e = inlinks.elements();
 Synapse s;
 sum=0.0;
 while(e.hasMoreElements())
 {
 s = (Synapse)e.nextElement();
 sum += s.from.getOutput()*s.weight;
 }
 output = aFunction.computeFunction(sum); // activation
function
 }

As is apparent the code loops through all the synapses
that are going into the neuron and multiplies their
weight by the output of the other end (the from neuron),
this number is accumulated then to create the sum.

The output is the result of the activation function
associated with this neuron with the sum as its
parameter.

The next function is the backpropagation function to
compute the error delta from the output to the last
hidden layer.

 public void computeBackpropDelta(double d) // for an
output neuron
 {
 delta = (d - output) *
aFunction.computeDerivative(sum);//sum must be computed
 }

you must provide the function with the correct target for
this neuron which is simply a floating point number.

4.2.1 Implementing the backpropagation
for hidden layers:
This function shows how to compute the
backpropagation delta for hidden units, the important
piece of code here is the testing if the next node is a
SIGMA node or a PI node:

 if(synapse.to instanceof Neuron)

this allows to compute the derivative of pi nodes in a
different way, which brings us to the details of
implementing backpropagation of PI nodes, as
discussed in the next section.

 public void computeBackpropDelta() // for a hidden neuron
 {
 double errorSum = 0.0;
 Synapse synapse;
 Enumeration e = outlinks.elements();
 while(e.hasMoreElements())
 {
 synapse = (Synapse)e.nextElement();
 if(synapse.to instanceof Neuron) // the next node is a
sigma node
 {
 errorSum += synapse.to.delta * synapse.weight ;
 }
 else //the next node is a pi node
 {
 PINode p = (PINode)synapse.to;
 double temp = p.computeDerivativeForNeuron(this);
 // now get all the deltas from the nodes connected to
this PI
 Enumeration eS = p.outlinks.elements();
 while(eS.hasMoreElements())
 {
 Synapse s = (Synapse)eS.nextElement();
 errorSum += s.to.delta*temp*s.weight;
 }
 }
 }

4.2.2 Implementing backpropagation delta
for PI nodes
The hardest part in the previous equation is the
computation of s'k since it totally dependent on the
topology of the network. This problem is easily solved
with the current architecture of the network which
allows the nodes to be connected in an arbitrary way.
The previous code presented for the neuron
backpropagation delta showed a bit of the computation
of s'k :

else //the next node is a pi node
 {
 PINode p = (PINode)synapse.to;
 double temp = p.computeDerivativeForNeuron(this);
 // now get all the deltas from the nodes connected to
this PI
 Enumeration eS = p.outlinks.elements();
 while(eS.hasMoreElements())
 {
 Synapse s = (Synapse)eS.nextElement();
 errorSum += s.to.delta*temp*s.weight;
 }
 }
 }

this code uses a function unique to the PINode class:
computeDerivativeForNeuron,which computes the sk
for this particular Neuron:

5. The Application
This is a typical screenshot of the application written, as
seen the application consists of different windows each
with its own functionality. The application allows the
creation of as many of these windows as necessary to
maximize the idea of trying different configurations
with different data. The top left window is the main
Honn window, which allows creating, editing,
connecting and running simulations on high order
networks. The top right window is the Input/Output

data window, which allows creating the data for the
network and save it if needed. Beneath that is the graph
window that shows the error of the network in
comparison to the number of iterations (epochs) the
network has been trained.

 public double computeDerivativeForNeuron(Neuron n)
 {
 // this function computes the function
 // d(this Pi node output)/d(output of n)
 // by considering the output of n is 1 and computing the
product of the rest
 double prod = 1.0;
 Enumeration e = inlinks.elements();
 Synapse s;
 while(e.hasMoreElements())
 {
 s = (Synapse)e.nextElement();
 if(s.from == n)
 {
 //dont do anything
 }
 else
 {
 prod *= s.from.getOutput();
 }
 }
 return prod;
 }

Fig. 4 The main GUI window used in the neural
network builder.

The console window shows relevant information on the
creation and running of the network. Any number of
honn windows, graph windows, and data windows can
be created using the top menu; this will allow testing a
network against multiple data sets without resetting the
program. It also will allow the test of different networks
(with different topologies for instance) with the same
data, making it easy to compare and evaluate.

The main window also contains a graphical depiction of
the neural network, showing many important aspects of
each node in the HONN. Mouse events are available on
the nodes, right clicking on a node will allow the

editing of the activation function, the momentum, and
the learning rate of the nodes. Left clicking on the
nodes will allow connecting of the nodes interactively.

The Data window allows two kinds of inputs, one that
takes numbers (floating numbers) as input data (the
input vector) and lets the user choose an output from a
number of classes. This kind of data is the typical
“classified data” where the input represents a “class”
from a group of classes.

The other kind of input is what we call “numerical
output” data, the input vector represents one floating
point number, meaning such data can be recognized by
a network with only one output, but this output can take
many different values.

The error graph scales automatically when more
iterations are run, meaning that one can train the
network for a certain number of epochs, monitor results,
tweak some parameters and rerun the training process,
all while seeing the error graph in the window.

6. A Case Study: The Parity Bit
Problem

The parity bit problem is rather interesting as it is used
to since it is a very demanding classification task for
neural networks to solve, because the target-output
changes whenever a single bit in the input vector
changes, and usually networks do not converge
easily.The main idea is to make the network function as
a XOR gate with multiple inputs. With the tool we have
created we tried the simplest XOR example: the one
with two bits.

Fig. 5 Without any hidden layers the network will
not converge: after 300 iterations the accumulated
error is still larger than 0.1 and when testing the
samples only 50% are accepted.

Fig. 6 With a single hidden layer, two neurons: On
the first tests, the network didn’t converge even
after 300 iterations. However, after adjusting the
learning rate (0.8) and changing the output function
to Linear the network converged easily after about
70 epochs.

Fig. 7 With a single Pi node and shortcut links: with
learning rate 0.6 and the output node with a Linear
function this network converges extremely fast: 10
iterations only.

7. Conclusions
All fields of computer science can benefit from a well
structured, well designed application with a good user
interface, especially one like neural networks, where
trail and error is dominant. AI is both an exciting and
involving area, and the more tools the researchers are
given, the faster they will give us new artificial marvels
that we can benefit from. This application will always
be a “in work project”, since an endless numbers of
features and enhancements can be added. Maybe some
of the more significant features would be:

• More Neural Networks: the world of pattern
classification contains tens of different networks
that this application could easily implement with its
current structure. Unsupervised networks such as

Kohnen networks, and self organizing feature maps
could be easily added to the application.

• More modifying algorithms: Algorithms that
modify the networks topology or properties in
intelligent ways, such as algorithms that change the
learning rate at run time such as “CGD” and
network pruning algorithms such as “Optimal
Brain Damage” algorithm. Even genetic algorithms
that allow the “evolving” of the network can be
added.

• Adding a compile feature: this feature will allow
the user to take the current neural network after he
has trained it, then “compile” it into java code, i.e.
creating a java class that contains a function that
takes an array of data as its parameter. This
function will then “classify” this array and return
the result. The network would be highly optimized
as it has been “frozen” into code, and it would
allow use of it in different programs.

8. References
[1] C. Bishop, "Neural Networks for Pattern

Recognition", Oxford University Press, Oxford,
UK, (1995).

[2] L. Franco and S.A. Cannas, “Generalization and
selection of examples in feedforward neural
networks”, Neural Computation 12(9), 2000, 2405-
2426.

[3] L.Franco and S.A. Cannas, Generalization
Properties of Modular Networks: Implementing the
Parity Function, IEEE transactions on neural
networks, 12(6), 2001, 1306-1313.

[4] A.A. Ghorbani and K. Owrangh, “Stacked
Generalization in Neural Networks: Generalization
on Statically Neutral Problems”, Proc. of the
IEEE/INNS International Joint conference on
Neural Networks (IJCNN'2001), Washington D.C.,
USA, 2001,1715-1720.

[5] C.L.Giles, and C.W. Omlin, “Pruning Recurrent
Neural Networks for Improved Generalization
Performance”, IEEE transactions on neural
networks, 5(5), 1994, 848-855.

[6] S. Hochreiter, and J. Schmidhuber, “LSTN Can
Solve Hard Long Time Lag Problems”, In. Mozer,
M.C.,. Jordan, M.I, Petsche, T. eds., Advances in
Neural Information Processing Systems 9 (NIPS'9),
Cambridge MA: MIT Press, 1997, 473-479.

[7] M.E. Hohil, D. Liu, and S.H. Smith, “Solving the
N-bit parity problem using neural networks”,
Neural Networks, 12(9), 1999, 1321-1323.

[8] D.E. Rumelhart and J.L, McClelland, Parallel
distributed processing (Vol.1). Cambridge, MA:
MIT press, 1986.

[9] R. Setiono, On the solution of the parity problem
by a single hidden layer feedforward neural
network, Neurocomputing, 16(3), 1997, 225-235.

[10] S. Haykin, Neural Networks. A Comprehensive
Foundation, Second Edition, Prentice-Hall, Inc.,
New Jersey, 1999.

[11] N. Nilsson, "Introduction to Machine Learning",
Chapter 4: Neural Networks, 1996.

[12] M. Heywood and P. Noakes, A Framework for
Improved Training of Sigma-Pi Networks, IEEE

Transaction on Neural Networks, 6(4), 1995, 893-
903.

[13] Y. Shin and J. Ghosh, The Pi-Sigma Network: An
Efficient Higher-Order Network for Pattem
Classification and Function Approximation, Proc.
Int.Joint Conference on Neural Networks IJCNN,
Seattle, vol. I, 1991, 13-18.

[14] R.Bone, M. Crucianu, J.P. Asselen de Beauville,
Yet Another Neural Network Simulator, Computer
in Use, France, 1998.

