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Abstract 
Neural Network Builder is a software tool that aids in 
the design, training, and testing of neural networks 
using an easy user friendly interface. This tool is an 
efficient neural network simulator, it can be used for 
projects that can help in the understanding of neural 
networks by exhibiting different algorithms and ideas 
and allowing the tweaking and monitoring of the 
network’s many properties. In addition to ease of 
creating and simulating, the object oriented code 
provides a valuable software environment that allows 
the development of new algorithms and theories. To our 
knowledge, this is the first simulator that implements 
high order nodes. 

Keywords : High Order Neural Network, GUI, Java, 
Backpropagation, Sigma-Pi networks. 

1. Introduction 
In a research aimed to build a neural network that could 
recognize the English alphabet, most of research led to 
“hard coded” neural networks, networks that could do 
one task only. These NN were fast but led to problems 
due to there extreme specialization in a certain task, any 
change to the number of neurons, the topology, or just 
simple learning rate needed a recompile. Such 
parameters could be exposed with some careful 
programming in runtime, but still the whole network 
was bound by its specialized nature. In addition to these 
shortcomings, the code resembled nothing that we had 
learned in theory; the whole NN was just a big array of 
pointers with another array that held the connections, 
making the bridging between theory and practice a hard 
task for those still new to the entire concept. 

The main aim of this research is to build a general 
network where all aspects could be changed at runtime, 
in a simple and clear way, using an object oriented 
design that is analogous to what we have learned. To 
take this task to a higher level of similarity between 
theory and practical application, we allowed the 
network to be drawn and updated graphically bringing 
additional similarity between the classroom and the 
screen. Also thrown into the research are the 
implementation of different theories, theories that are 
not used a lot in commercial programs since they are 
too hard to control or inefficient, but are very important 

to the understanding of NN and how they work. One 
such feature is the High order neural network (HONN) 
with PI nodes. Also this is multiplatform, written in 
Java, it allows this code to be run anywhere without 
modification, it also lends itself to being easily exposed 
to the web, and its computations to be distributed across 
networks. 

There are many neural network simulators available 
both commercial and free (too many in fact)  [4], but 
most of these simulators are system dependent, and 
written for few platforms (UNIX or Windows). The 
majority of these simulators have some sort of GUI but 
most of them do not depict the network graphically, nor 
allow the creation of PI nodes. There are some software 
packages that do all that, such as NeuralBuilder from 
NeuralSolutions, a commercial application that works 
solely on Windows. There are also some portable C++ 
simulators such as YANNS, but most of the simulators 
available are written in C to maximize performance. 
Not many simulators are written in Java, but the open 
source project “OpenAi” is a notable example. At the 
end of the day, a simple search in Google will give the 
reader thousands of results. 

2. Theoretical material used in the 
neural network builder  

Following is a non comprehensive introduction to the 
theory and mathematics behind neural networks, most 
importantly the theories relevant to this research. A 
neural network is a powerful data modeling tool that is 
able to capture and represent complex input/output 
relationships. The motivation for the development of 
neural network technology stemmed from the desire to 
develop an artificial system that could perform 
"intelligent" tasks similar to those performed by the 
human brain. Neural networks resemble the human 
brain in the following two ways: 

• A neural network acquires knowledge through 
learning.  

• A neural network's knowledge is stored within 
inter-neuron connection strengths known as 
synaptic weights.  



The most common neural network model is the 
multilayer perceptron (MLP). This type of neural 
network is known as a supervised network because it 
requires a desired output in order to learn. The goal of 
this type of network is to create a model that correctly 
maps the input to the output using data so that the 
model can then be used to produce the output when the 
desired output is unknown The MLP and many other 
neural networks learn using an algorithm called 
backpropagation. With backpropagation, the input data 
is repeatedly presented to the neural network. With each 
presentation the output of the neural network is 
compared to the desired output and an error is 
computed. This error is then fed back (backpropagated) 
to the neural network and used to adjust the weights 
such that the error decreases with each iteration and the 
neural model gets closer and closer to producing the 
desired output. This process is known as "training".  

2.1 Multilayer Network Structure 
A neural network with one or more layers of nodes 
between the input and the output nodes is called 
multilayer network.  

The multilayer network structure, or topology, consists 
of an input layer, two or more hidden layers, and one 
output layer. The input nodes pass values to the first 
hidden layer, its nodes to the second and so on till 
producing outputs.  

 
Fig.  1 A Multilayer Perceptron (MLP), A two-layer 
neural network that implements the function:  f( x )= 
σσσσ ( wjkσσσσ ( wijxi + w0j ) + w0k ),  

These are the hidden units that enable the multilayer 
network to learn complex tasks by extracting 
progressively more meaningful information from the 
input examples.  

2.2 Higher Order Networks 
The higher order neural networks (HONN) have been 
developed with intention to enhance the nonlinear 
descriptive capacity of the feed-forward multilayer 
perceptron networks. This is achieved by means of 
increasing the nonlinear descriptive capability of the 
individual neurons. 

A higher order neural network has summation (sigma) 
as well as product (pi) units. A HONN builds 
multivariate high-order polynomial models: 

P( x ) = w0 + Σi wi xi + ΣiΣj wij xi xj + ΣiΣjΣk wijk xi xj 
xk + ...  ( 1) 

or written concisely:  

P( x ) = w0 + Σ wi Π xj
r    ( 2) 

The Sigma-Pi neural networks (SPN) are such 
feedforward networks where each layer contains higher-
order terms. Often the layers have summation units 
feeded via weighted connections by intermediate 
product unit outcomes. 

2.3 Sigma-Pi Network Structure 
Sigma-Pi neural networks are sparsely connected 
HONN. Researchers restrict the polynomial order (that 
is the network topology) to a configuration sufficient to 
achieve the desired degree of accuracy using a priori 
knowledge about the given task. 

 

Fig.  2 A Sigma-Pi network 

The sigma units compute the sum of weighted inputs pj 
from the lower j-th layer: 

s = Σj wi pj  ( 3) 

The pi units compute the product of weighted inputs xi 
from the lower i-th layer: 

pj = Πi wi xi  ( 4) 

2.4 BackPropagation: 
MLP became applicable on practical tasks after the 
discovery of a supervised training algorithm for 
learning their weights; this is the backpropagation 
learning algorithm. The backpropagation algorithm for 
training is iterative with the weights adjusted after the 
presentation of each example. 

The error backpropagation algorithm includes two 
passes through the network: forward pass and 
backward pass. During the backward pass the weights 
are adjusted in accordance with the error correction 



rule. It suggests that the actual network output is 
subtracted from the given output in the example. The 
weights are adjusted so as to make the network output 
closer to the desired one. 

2.4.1 Derivation of the Backpropagation 
Algorithm 
The backpropagation algorithm  [1] for training the 
multilayer perceptron implements a generalized delta 
rule according to which with each training example 
every weight is updated as follows: 

w = w + ∆ w  ( 5) 

where: ∆ w= - η ∂Ee / ∂w and Ee = ( 1/2 ) Σk ( yk - ok )
2 

The implementation of the generalized delta rule 
requires deriving an expression for the computation of 

the derivatives ∂Ee / ∂w: 

∂Ee / ∂w = ( ∂Ee / ∂s )( ∂s / ∂w )  ( 6) 

The first part ∂Ee / ∂s reflect the change of the error as 
a function of the change in the network weighted input 

to the unit. The second part ∂s / ∂w reflects the change 
of the error as a function of the change of particular 
weight w to that node. Since: 

∂s / ∂w = ∂ ( Σl wl ol ) / ∂w = o   ( 7) 

the expression is reduced as follows: ∂Ee / ∂w = ( ∂Ee / 
∂s ) o 

2.4.1.1 Delta Rule for weights j→→→→k on 
connections to nodes in the output layer 

∂Ee / ∂wjk = ( ∂Ee / ∂sk ) oj  ( 8) 

∂Ee / ∂sk = ( ∂Ee / ∂ok )( ∂ok / ∂sk ) 

∂Ee / ∂ok = ( ∂ (( 1/2 ) Σl ( yl - ol )
2 )) / ∂ok  

= ( ∂(( 1/2 )( yk - ok )
2 )) / ∂ok // comment: from 

the case l = k  

= ( 1/2 ) 2 ( yk - ok ) [ ∂( yk - ok ) / ∂ok]  

= - ( yk - ok ) 

∂ok / ∂sk= ∂σ ( sk ) / ∂sk 

 = ∂σ ' ( sk ) 

if σ is sigmoid function ok ( 1 - ok )  (this can be 
obtained from s ( sk ) = 1 / ( 1 + e-sk ) ) 

Therefore: 

∂Ee / ∂sk = - ( yk - ok ) ok ( 1 - ok )  (9) 

and when we substitute: βk = ok ( 1 - ok ) [ yk - ok] 

the Delta rule for the output units becomes: 

∆ wjk = -∂Ee / ∂wjk = η βk oj  (10) 

2.4.1.2 Delta Rule for weights i→→→→j on 
connections to nodes in the hidden layer 

In this case the error depends on the errors 
committed by all output units: 

∂∂∂∂Ee / ∂wij = ( ∂ Ee / ∂sj) oi  

∂Ee / ∂sj = Σk ( ∂Ee / ∂sk )( ∂sk / ∂sj ) 

= Σk ( -βk ) ∂sk / ∂sj // comment: from ∂Ee / ∂sk 
= -βk  

= Σk ( -βk ) ( ∂sk / ∂oj )( ∂oj / ∂sj ) 

= Σk ( -βk) wjk ( ∂oj / ∂sj) 

= Σk ( -βk) wjkoj ( 1 - oj ) 

Therefore, when we substitute:  

βj = - ∂Ee / ∂sj= oj ( 1 - oj ) Σk ( -βk) wjk ( 11) 

the Delta rule for the hidden units becomes: 

∆wij = -∂Ee / ∂wij = η βj oi  (12) 

2.5 Backpropagation Algorithm for Sigma-
Pi Networks 

The principles of the backpropagation learning 
algorithm are valid also for Sigma-Pi networks. 

2.5.1 Sigma-Pi Delta Rule for weights i→ j 
on connections to nodes in the hidden 
layers 

∂Ee / ∂sj = Σk ( ∂Ee / ∂sk )( ∂sk / ∂sj ) 

= Σk ( -βk ) ∂sk / ∂sj // comment: from ∂Ee / ∂sk 
= -βk  

= Σk ( -βk ) ( ∂sk / ∂oj )( ∂oj / ∂sj ) 

= Σk ( -βk) ( s'k ) ( ∂oj / ∂sj) 



= Σk ( -βk) ( s'k ) oj ( 1 - oj )  ( 13) 

where for sk defined: sk = w0 + Σj1 wj1 oj1 + Σj1Σj2 wj1j2 
oj1 oj2 + Σj1Σj2Σj3 wj1j2j3 oj1 oj2 oj3 + ... 

its derivative ( ∂sk / oj2 )=s'k is: s'k = Σj1 wj1j2 oj1 + Σj1 Σj3 
wj1j2j3 oj1 oj3 + ...  

Therefore, the benefit is:  

βj = - ∂Ee / ∂sj = oj ( 1 - oj ) ∑k βk s'k  ( 14) 

3. The Proposed Algorithm 
The main goal of this research is to give the user an 
intuitive tool to manage High order neural networks, 
namely Sigma Pi networks. The introduction of Pi 
nodes in the network complicates the mathematics and 
algorithms needed to correctly compute the output of 
the network, especially the computation of 
backpropagation. We also wanted to allow the user to 
use arbitrary topology, to connect any node to any other 
node in the network, allowing the testing of different 
topologies and configurations. This also creates lots of 
problems in the network’s basic computations. The 
following algorithms try to find solutions to these 
problems. 

3.1 The network structure: 
 The first step to finding solutions is to create a 
structure for the network that allows arbitrary and 
changing topology. Usually networks are created by 
using arrays for the nodes and connections; this will not 
exactly work here. 

A better structure would be one less used as it is usually 
slower; create an object for each node in the neural 
network, with a list of connection going in and a list of 
connections going out, so when ever this node is 
connected to another, we just create a link (which is 
implemented as another object) and add a reference of it 
to the out links list of the connect from node, and 
another reference to the in links list of the connected to 
node. These nodes can be arranged into layers, each 
layer having a list of all the nodes in it, and then the 
high order network can contain many layers, also 
maintained by a list. Whereas this structure will allow 
connections between different nodes of the network, it 
creates a big problem in the computation of 
backpropagation, since the latter needs to compute the 
derivative of the error rule. The adding of an unknown 
number of layers also complicates this task. 

To solve these problems, the proposed algorithm breaks 
down the derivation rules to their basic elements and 
tries to reconstruct them according to the topology. 

3.2 The FeedForward Algorithm 
The first algorithm would be the feedforward algorithm, 
one that presents the network with a sample at its input 
layer and allows it to be forward propagated till we 
reach the output layer. 

This algorithm is fairly simple with the suggested 
network structure, get a layer then loop through all its 
nodes computing the output with the following steps: 

compute the output for each node:  

a. sum = 0 ; i = 1; 
b. get the incoming link(i) from the in links list 
c. get the other endpoint’s output  Oj(the neuron from 

which the link came from)  
d. multiply Oj  by the links weight  
e. add Oj to sum 
f. i = i+1 
g. if there are more links go to (b) 
h.the output = σ(sum)  //pass the sum through the 

activation function 

3.3 The Backpropagation for Sigma Nodes 
Algorithm 
There are two kinds of sigma nodes: output nodes and 
hidden layer nodes. 

3.3.1 Output Layer Nodes 
The Delta rule for the output units is: 

∆ wjk = -∂Ee / ∂wjk = η βk oj ( 15) 

βk = ∂σ ( sk ) / ∂sk [ yk - ok]  ( 16) 

Where j is the hidden layer and k is the output layer 

The steps for computing beta for output units 
are: 

1. compute the output for each node:  
2. compute the derivative of the activation 

function  
3. beta = (target – output)* σ'(sum)   

After computing beta the computation of the 
Delta rule is simple. 

3.3.2 Hidden Layer Nodes 

βj = - ∂Ee / ∂sj= σ'(oj ) Σk ( -βk) wjk  ( 17) 

for the hidden layers the beta is a bit more complicated 
as we have to accumulate the betas for the layer above 
the neurons layer, this is easily obtained by reading the 
out links list and getting the computed beta. 

1. compute the sum and output for node 

2. errorsum = 0 , i=1 

3. get link(i) from out links 



4. get the “to” node from link (the node that the link 
leads to) 

5. errorsum = errorsum + to.beta*link.wieght 

6. beta = σ' (sum) * errorsum  //σ' is the derivative of 
the activation function 

3.4 The Backpropagation Algorithm for Pi 
Nodes 

βj = - ∂Ee / ∂sj = σ' (sj )∑k βk s'k  ( 18) 

The problem with computing this beta is s'k where 

sk = w0 + Σj1 wj1 oj1 + Σj1Σj2 wj1j2 oj1 oj2 + Σj1Σj2Σj3 wj1j2j3 
oj1 oj2 oj3 + ...  ( 19) 

is the sum of all the incoming data into this pi node  

( ∂sk / oj2 ) = s'k = Σj1 wj1j2 oj1 + Σj1 Σj3 wj1j2j3 oj1 oj3 + ...
  ( 20) 

it is apparent that the derivation ∂sk / oj2  is basically sk 
with oj2 set to equal 1. With this in mind, the algorithm 
to compute the s'k for pi nodes is: 

1. P is the Pi node, N is the node that P’s output 
will be derived in respect to 

2. i=0;product=1; 
3. get link(i) from in links list for P 
4. if link(i).from  = N then product = product*1 
5. else  

a- get output  o of link(i).from  
b- product = product*o 

the computation of the beta of such node is the same as 
Sigma nodes. 

4. The Implementation 
The following is the implementation of the algorithms 
presented, these algorithms will be explained more 
where the code is represented. 

4.1 Implementation of the MLP 
At the heart of this research is the correct use of object 
oriented programming to achieve a well structured 
application, one that can be developed quickly and 
efficiently, and to be debugged and extended easily. 
This application must also be user friendly, 
implementing all graphically interface elements that aid 
the user in getting the job done. The first choice was to 
use Java, being a strict object oriented language that 
allows high productivity through its large library of 
classes. The second choice was to extend (inherent) 
from Java’s Graphical User Elements, since most of the 

classes of the neural network were to be depicted 
graphically. And the third choice was to allow the 
changing of any aspect of the network at runtime, but 
the computational logic had to withstand. With these 
points in mind, let us look at the classes’ tree:  

 
Fig.  3 The main classes used in neural network 
builder 

As shown, the basic element of the Honn (high order 
neural n etwork) class is the Neuron, but since we have 
to different kinds of neurons, sigma and pi neurons, we 
need to build the HONN from a “higher order” class, 
which is the HonnNode class as shown. This class is 
abstract since it contains some abstract methods, 
functions with no bodies that should be implemented in 
the children of this class. From this class we extend two 
classes: Neuron, and PINode. This design allows us to 
use polymorphism on the Honn class, by building from 
the abstract HonnNode class, and these classes will be 
defined at runtime to be one the subclasses. 

The most important functions of HonnNode are : 
computeOutput , getOutput, and setActivationFunction. 
Also in this class we have two Vectors (resizable 
arrays) that contain pointers to Synapses, the connectors 
that connect neurons to each other. Each Synapse 
contains a weight value, this is updated when the 
backpropagation is computed. 

Also within each HonnNode is the activation function, 
since we wanted to allow it to be changed at runtime, 
we also allowed the ActivationFunction class to be 
abstract with two important methods : computeOuput, 
and computeDerivative, which are overrided by the 
class that implement ActivationFunction, meaning we 
can call these functions without knowing which 
activation function is used by the node. 

It also can be noticed that Synapse and HonnNode 
extend JCompnent  from the Java Graphical 
Components Libraray “Swing”. This allows these two 
classes to be “drawn” be simply overriding the 
paintComponent() function. By adding instances of 
these classes to a container (like a JPanel) these objects 
will automatically be drawn. 

HonnNode 
.Vector inlinks 

Neuron 
 

PINode 
 

JComponen
t 
 

Honn 
Vector 
layers 

Layer 
Vector 
nodes 

Synapse 
 

ActivationFun

Sigmoid Tanh 
 

Linear 
 



With these building blocks, the Layer class uses 
HonnNodes to create a “layer” of neurons, the Honn 
class then uses multiple layers to create a full MLP. 

4.2 Implementing the Backpropogation 
rule: 
The following functions are from the Neuron Class: 

The first is the computeOutput which calculates the 
output of this neuron: 

 
public void computeOutput() 
  { 
    Enumeration e = inlinks.elements(); 
    Synapse s; 
    sum=0.0; 
    while(e.hasMoreElements()) 
    { 
      s = (Synapse)e.nextElement(); 
      sum += s.from.getOutput()*s.weight; 
    } 
    output = aFunction.computeFunction(sum); // activation 
function 
  } 

 
As is apparent the code loops through all the synapses 
that are going into the neuron and multiplies their 
weight by the output of the other end (the from neuron), 
this number is accumulated then to create the sum. 

The output is the result of the activation function 
associated with this neuron with the sum as its 
parameter. 

The next function is the backpropagation function to 
compute the error delta from the output to the last 
hidden layer.  

  public void computeBackpropDelta(double d) // for an 
output neuron 
  { 
    delta = (d - output) * 
aFunction.computeDerivative(sum);//sum must be computed 
  } 

 
you must provide the function with the correct target for 
this neuron which is simply a floating point number. 

 

4.2.1  Implementing the backpropagation 
for hidden layers: 
This function shows how to compute the 
backpropagation delta for hidden units, the important 
piece of code here is the testing if the next node is a 
SIGMA node or a PI node: 

 

 if( synapse.to instanceof Neuron) 

 

this allows to compute the derivative of pi nodes in a 
different way, which brings us to the details of 
implementing backpropagation of PI nodes, as 
discussed in the next section. 

  public void computeBackpropDelta() // for a hidden neuron 
  { 
    double errorSum = 0.0; 
    Synapse synapse; 
    Enumeration e = outlinks.elements(); 
    while(e.hasMoreElements()) 
    { 
      synapse = (Synapse)e.nextElement(); 
      if(synapse.to instanceof Neuron) // the next node is a 
sigma node 
      { 
        errorSum += synapse.to.delta * synapse.weight ; 
      } 
      else //the next node is a pi node 
      { 
        PINode p = (PINode)synapse.to; 
        double temp = p.computeDerivativeForNeuron(this); 
        // now get all the deltas from the nodes connected to 
this PI 
        Enumeration eS = p.outlinks.elements(); 
        while(eS.hasMoreElements()) 
        { 
          Synapse s = (Synapse)eS.nextElement(); 
          errorSum += s.to.delta*temp*s.weight; 
        } 
      } 
    } 

 

4.2.2 Implementing backpropagation delta 
for PI nodes 
The hardest part in the previous equation is the 
computation of  s'k  since it totally dependent on the 
topology of the network. This problem is easily solved 
with the current architecture of the network which 
allows the nodes to be connected in an arbitrary way. 
The previous code presented for the neuron 
backpropagation delta showed a bit of the computation 
of  s'k : 

else //the next node is a pi node 
      { 
        PINode p = (PINode)synapse.to; 
        double temp = p.computeDerivativeForNeuron(this); 
        // now get all the deltas from the nodes connected to 
this PI 
        Enumeration eS = p.outlinks.elements(); 
        while(eS.hasMoreElements()) 
        { 
          Synapse s = (Synapse)eS.nextElement(); 
          errorSum += s.to.delta*temp*s.weight; 
        } 
      } 
    } 

this code uses a function unique to the PINode class: 
computeDerivativeForNeuron,which computes the sk 
for this particular Neuron: 

5. The Application 
This is a typical screenshot of the application written, as 
seen the application consists of different windows each 
with its own functionality. The application allows the 
creation of as many of these windows as necessary to 
maximize the idea of trying different configurations 
with different data. The top left window is the main 
Honn window, which allows creating, editing, 
connecting and running simulations on high order 
networks. The top right window is the Input/Output 



data window, which allows creating the data for the 
network and save it if needed. Beneath that is the graph 
window that shows the error of the network in 
comparison to the number of iterations (epochs) the 
network has been trained. 

 

 public double computeDerivativeForNeuron(Neuron n) 
 { 
   // this function computes the function 
   // d(this Pi node output)/d(output of n) 
   // by considering the output of n is 1 and computing the 
product of the rest 
   double prod = 1.0; 
   Enumeration e = inlinks.elements(); 
   Synapse s; 
   while(e.hasMoreElements()) 
   { 
      s = (Synapse)e.nextElement(); 
      if(s.from == n) 
      { 
        //dont do anything 
      } 
      else 
      { 
        prod *= s.from.getOutput(); 
      } 
   } 
   return prod; 
 } 

 

 
Fig.  4 The main GUI window used in the neural 
network builder. 

 
 

The console window shows relevant information on the 
creation and running of the network. Any number of 
honn windows, graph windows, and data windows can 
be created using the top menu; this will allow testing a 
network against multiple data sets without resetting the 
program. It also will allow the test of different networks 
(with different topologies for instance) with the same 
data, making it easy to compare and evaluate. 

The main window also contains a graphical depiction of 
the neural network, showing many important aspects of 
each node in the HONN. Mouse events are available on 
the nodes, right clicking on a node will allow the 

editing of the activation function, the momentum, and 
the learning rate of the nodes. Left clicking on the 
nodes will allow connecting of the nodes interactively.  

The Data window allows two kinds of inputs, one that 
takes numbers (floating numbers) as input data (the 
input vector) and lets the user choose an output from a 
number of classes. This kind of data is the typical 
“classified data” where the input represents a “class” 
from a group of classes. 

The other kind of input is what we call “numerical 
output” data, the input vector represents one floating 
point number, meaning such data can be recognized by 
a network with only one output, but this output can take 
many different values. 

The error graph scales automatically when more 
iterations are run, meaning that one can train the 
network for a certain number of epochs, monitor results, 
tweak some parameters and rerun the training process, 
all while seeing the error graph in the window. 

6. A Case Study: The Parity Bit 
Problem 

The parity bit problem is rather interesting as it is used 
to since it is a very demanding classification task for 
neural networks to solve, because the target-output 
changes whenever a single bit in the input vector 
changes, and usually networks do not converge 
easily.The main idea is to make the network function as 
a XOR gate with multiple inputs. With the tool we have 
created we tried the simplest XOR example: the one 
with two bits. 

 
Fig.  5  Without any hidden layers the network will 
not converge: after 300 iterations the accumulated 
error is still larger than 0.1 and when testing the 
samples only 50% are accepted. 



 
Fig.  6  With a single hidden layer, two neurons: On 
the first tests, the network didn’t converge even 
after 300 iterations. However, after adjusting the 
learning rate (0.8) and changing the output function 
to Linear the network converged easily after about 
70 epochs. 

 

 
Fig.  7 With a single Pi node and shortcut links: with 
learning rate 0.6 and the output node with a Linear 
function this network converges extremely fast: 10 
iterations only. 

7. Conclusions 
All fields of computer science can benefit from a well 
structured, well designed application with a good user 
interface, especially one like neural networks, where 
trail and error is dominant. AI is both an exciting and 
involving area, and the more tools the researchers are 
given, the faster they will give us new artificial marvels 
that we can benefit from. This application will always 
be a “in work project”, since an endless numbers of 
features and enhancements can be added. Maybe some 
of the more significant features would be: 

• More Neural Networks: the world of pattern 
classification contains tens of different networks 
that this application could easily implement with its 
current structure. Unsupervised networks such as 

Kohnen networks, and self organizing feature maps 
could be easily added to the application. 

• More modifying algorithms: Algorithms that 
modify the networks topology or properties in 
intelligent ways, such as algorithms that change the 
learning rate at run time such as “CGD” and 
network pruning algorithms such as “Optimal 
Brain Damage” algorithm. Even genetic algorithms 
that allow the “evolving” of the network can be 
added. 

• Adding a compile feature: this feature will allow 
the user to take the current neural network after he 
has trained it, then “compile” it into java code, i.e. 
creating a java class that contains a function that 
takes an array of data as its parameter. This 
function will then “classify” this array and return 
the result. The network would be highly optimized 
as it has been “frozen” into code, and it would 
allow use of it in different programs. 
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